1,031 research outputs found

    A multimedia package for patient understanding and rehabilitation of non-contact anterior cruciate ligament injuries

    Get PDF
    Non-contact anterior cruciate ligament (ACL) injury is one of the most common ligament injuries in the body. Many patients’ receive graft surgery to repair the damage, but have to undertake an extensive period of rehabilitation. However, non-compliance and lack of understanding of the injury, healing process and rehabilitation means patient’s return to activities before effective structural integrity of the graft has been reached. When clinicians educate the patient, to encourage compliance with treatment and rehabilitation, the only tools that are currently widely in use are static plastic models, line diagrams and pamphlets. As modern technology grows in use in anatomical education, we have developed a unique educational and training package for patient’s to use in gaining a better understanding of their injury and treatment plan. We have combined cadaveric dissections of the knee (and captured with high resolution digital images) with reconstructed 3D modules from the Visible Human dataset, computer generated animations, and images to produce a multimedia package, which can be used to educate the patient in their knee anatomy, the injury, the healing process and their rehabilitation, and how this links into key stages of improving graft integrity. It is hoped that this will improve patient compliance with their rehabilitation programme, and better long-term prognosis in returning to normal or near-normal activities. Feedback from healthcare professionals about this package has been positive and encouraging for its long-term use

    An investigation to examine the most appropriate methodology to capture historical and modern preserved anatomical specimens for use in the digital age to improve access: a pilot study

    Get PDF
    Anatomico-pathological specimens constitute a valuable component of many medical museums or institutional collections but can be limited in their impact on account of both physical and intellectual inaccessibility. Further concerns relate to conservation as anatomical specimens may be subject to tissue deterioration, constraints imposed by spatial or financial limitations of the host institution, or accident-based destruction. In awareness of these issues, a simple and easily implementable methodology to increase accessibility, impact and conservation of anatomical specimens is proposed which combines photogrammetry, object virtual reality (object VR), and interactive portable document format (PDF) with supplementary historical and anatomical commentary. The methodology was developed using wet, dry, and plastinated specimens from the historical and modern collections in the Museum of Anatomy at the University of Glasgow. It was found that photogrammetry yielded excellent results for plastinated specimens and showed potential for dry specimens, while object VR produced excellent photorealistic virtual specimens for all materials visualised. Use of PDF as output format was found to allow for the addition of textual, visual, and interactive content, and as such supplemented the virtual specimen with multidisciplinary information adaptable to the needs of various audiences. The results of this small-scale pilot study indicate the beneficial nature of combining these established techniques into a methodology for the digitisation and utilisation of historical anatomical collections in particular, but also collections of material culture more broadly

    How to effectively design and create a concept mobile application to aid in the management of type 1 diabetes in adolescents

    Get PDF
    Diabetes is one of the eight most prevalent chronic health conditions in the World; therefore there is a wide range of diabetes-related mobile applications available to the public to aid in glycaemic control and self-management. Statistically, adherence to medication is extremely low in adolescents with Type 1 Diabetes Mellitus (T1DM), therefore it is crucial that adolescents adhere to their medication from a young age and adopt good medication regimes. This paper focuses on the research and design of an interactive and educational concept mobile application aimed at adolescents, aged 11 to 16 years old, to aid in their understanding of T1DM. As visual elements are an essential part to the design of a mobile application, this research outlines how the visual components of the application were designed specifically for the target audience of adolescents with T1DM

    Proof of concept of a workflow methodology for the creation of basic canine head anatomy veterinary education tool using augmented reality

    Get PDF
    Neuroanatomy can be challenging to both teach and learn within the undergraduate veterinary medicine and surgery curriculum. Traditional techniques have been used for many years, but there has now been a progression to move towards alternative digital models and interactive 3D models to engage the learner. However, digital innovations in the curriculum have typically involved the medical curriculum rather than the veterinary curriculum. Therefore, we aimed to create a simple workflow methodology to highlight the simplicity there is in creating a mobile augmented reality application of basic canine head anatomy. Using canine CT and MRI scans and widely available software programs, we demonstrate how to create an interactive model of head anatomy. This was applied to augmented reality for a popular Android mobile device to demonstrate the user-friendly interface. Here we present the processes, challenges and resolutions for the creation of a highly accurate, data based anatomical model that could potentially be used in the veterinary curriculum. This proof of concept study provides an excellent framework for the creation of augmented reality training products for veterinary education. The lack of similar resources within this field provides the ideal platform to extend this into other areas of veterinary education and beyond

    The role of the lateral spinal nucleus in nociception

    Get PDF
    The lateral spinal nucleus (LSN), located in the dorsolateral funiculus, is an area that has been poorly understood, but has been implicated in nociception. To investigate the function of this nucleus, three broad areas were investigated: responses to nociceptive stimuli, neurochemical relations to the NK-1 receptor, and projections from this nucleus to several brain centres, to try to gain a greater understanding of the functions of this nucleus. The following conclusions can be drawn from the studies undertaken here: • A series of double-labelling experiments for confocal microscopy were carried out in the rat (Sprague-Dawley) to investigate the LSN responses to a variety of peripheral cutaneous noxious stimuli. It was found that the LSN responds to both thermal and chemical peripheral cutaneous noxious stimulation. However, unlike as previously thought, only a small number of neurons in the LSN are activated by a peripheral noxious stimulus, with hot water (55°C applied to the hind-paw) activating the most, as revealed by Fos immunoreactivity. Only 15% of LSN neurons showed response to this peripheral noxious stimulus. Interestingly, unlike the superficial dorsal horn (SDH), bilateral activation of LSN neurons after the application of a peripheral noxious stimulus was found in most of the experiments carried out. • Triple and quadruple-labelling experiments for confocal microscopy were carried out in the rat to investigate neurochemical relations at this site. It was found that although the LSN is abundant in staining for substance P, the number of LSN neurons showing immunoreactivity for the target of substance P (the NK-1 receptor) represented only one-third of all neurons at this site. However, substance P and nitric oxide synthase were associated with NK-1 neurons, and specifically nitric oxide synthase terminals were preferentially associated with NK-1 neuronal cell bodies. However, unlike the superficial dorsal horn, nitric oxide synthase terminals were not associated with inhibitory GABAergic neurons. • Using retrograde injection techniques (in the rat) combined with multiple immunolabelling for confocal microscopy, the LSN was shown to project to areas traditionally associated with nociception (caudal ventrolateral medulla and mediodorsal thalamus) but also projected to the hypothalamus and also the lateral globus pallidus. Indeed, the regions found to have the most projections from the LSN were the lateral and medial hypothalamus, with most of those neurons (>80%) possessing the NK-1 receptor. Interestingly, although numbers of retrogradely labelled neurons were low, they represented 30% of all labelled neurons that projected from the LSN to the lateral globus pallidus. In conclusion, the extent of involvement of the LSN in nociception is less than previously thought, but with projections to the hypothalamus, it could be postulated that the LSN functions as an integrative nucleus for autonomic and homeostatic functions, and related motivational and affective responses to autonomic function

    Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?

    Get PDF
    peer-reviewedBacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB). Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable spores to be more effectively targeted by bacteriocins in food settings.KE, DF, CH, PC, MR, RR are supported by the Irish Government under the National Development Plan, through the Food Institutional Research Measure, administered by the Department of Agriculture, Fisheries and Food, Ireland (DAFM 13/F/462) to PC and MR, a Science Foundation Ireland (SFI) Technology and Innovation Development Award (TIDA 14/TIDA/2286) to DF, SFI-PI funding (11/PI/1137) to PDC and the APC Microbiome Insitute under Grant Number SFI/12/RC/2273

    Circular frame fixation for calcaneal fractures risks injury to the medial neurovascular structures: a cadaveric description

    Get PDF
    Aim: There is a risk of iatrogenic injury to the soft tissues of the calcaneus and this study assesses the risk of injury to these structures in circular frame calcaneal fracture fixation. Materials and Methods: After olive tip wires were inserted, an L-shaped incision on the lateral and medial aspects of 5 formalin fixed cadaveric feet was performed to expose the underlying soft tissues. The calcaneus was divided into zones corresponding to high, medium and low risk using a grading system. Results: Structures at high risk included the posterior tibial artery, posterior tibial vein and posterior tibial nerve on the medial aspect. Soft tissue structures on the lateral side that were shown to be at lower risk of injury were the small saphenous vein and the sural nerve and the tendons of fibularis longus and fibularis brevis. Conclusion: The lateral surface of the calcaneus provides a lower risk area for external fixation. The risk of injury to significant soft tissues using a circular frame fixation approach has been shown to be greater on the medial aspect. Clinical Relevance: This study highlights the relevant anatomical relations in circular frame fixation for calcaneal fractures to minimize damage to these structures

    A Novel Method of Anatomical Data Acquisition Using the Perceptron ScanWorks V5 Scanner

    Get PDF
    A drastic reduction in the time available for cadaveric dissection and anatomy teaching in medical and surgical education has increased the requirement to supplement learning with the use of virtual gross anatomy training tools. In light of this, a number of known studies have approached the task of sourcing anatomical data from cadaveric material for end us in creating 3D reconstructions of the human body by producing vast image libraries of anatomical cross sections. However, the processing involved in the conversion of cross sectional images to reconstructions in 3D elicits a number of problems in creating an accurate and adequately detailed end product, suitable for educational. In this paperwe have employed a unique approach in a pilot study acquire anatomical data for end-use in 3D anatomical reconstruction by using topographical 3D laser scanning and high-resolution digital photography of all clinically relevant structures from the lower limb of a male cadaveric specimen. As a result a comprehensive high-resolution dataset, comprising 3D laser scanned data and corresponding colour photography was obtained from all clinically relevant gross anatomical structures associated with the male lower limb. This unique dataset allows a very unique and novel way to capture anatomical data and saves on the laborious processing of image segmentation common to conventional image acquisition used clinically, like CT and MRI scans. From this, it provides a dataset which can then be used across a number of commercial products dependent on the end-users requirements for development of computer training packages in medical and surgical rehearsal

    Real-time Medical Visualization of Human Head and Neck Anatomy and its Applications for Dental Training and Simulation

    Get PDF
    The Digital Design Studio and NHS Education Scotland have developed ultra-high definition real-time interactive 3D anatomy of the head and neck for dental teaching, training and simulation purposes. In this paper we present an established workflow using state-of-the-art 3D laser scanning technology and software for design and construction of medical data and describe the workflow practices and protocols in the head and neck anatomy project. Anatomical data was acquired through topographical laser scanning of a destructively dissected cadaver. Each stage of model development was clinically validated to produce a normalised human dataset which was transformed into a real-time environment capable of large-scale 3D stereoscopic display in medical teaching labs across Scotland, whilst also supporting single users with laptops and PC. Specific functionality supported within the 3D Head and Neck viewer includes anatomical labelling, guillotine tools and selection tools to expand specific local regions of anatomy. The software environment allows thorough and meaningful investigation to take place of all major and minor anatomical structures and systems whilst providing the user with the means to record sessions and individual scenes for learning and training purposes. The model and software have also been adapted to permit interactive haptic simulation of the injection of a local anesthetic

    A Novel Method of Anatomical Data Acquisition Using the Perceptron ScanWorks V5 Scanner

    Get PDF
    A drastic reduction in the time available for cadaveric dissection and anatomy teaching in medical and surgical education has increased the requirement to supplement learning with the use of virtual gross anatomy training tools. In light of this, a number of known studies have approached the task of sourcing anatomical data from cadaveric material for end us in creating 3D reconstructions of the human body by producing vast image libraries of anatomical cross sections. However, the processing involved in the conversion of cross sectional images to reconstructions in 3D elicits a number of problems in creating an accurate and adequately detailed end product, suitable for educational. In this paperwe have employed a unique approach in a pilot study acquire anatomical data for end-use in 3D anatomical reconstruction by using topographical 3D laser scanning and high-resolution digital photography of all clinically relevant structures from the lower limb of a male cadaveric specimen. As a result a comprehensive high-resolution dataset, comprising 3D laser scanned data and corresponding colour photography was obtained from all clinically relevant gross anatomical structures associated with the male lower limb. This unique dataset allows a very unique and novel way to capture anatomical data and saves on the laborious processing of image segmentation common to conventional image acquisition used clinically, like CT and MRI scans. From this, it provides a dataset which can then be used across a number of commercial products dependent on the end-users requirements for development of computer training packages in medical and surgical rehearsal
    • …
    corecore